
The
Connection Machine
System

""'s :::::::::~ ~ ~ ~ ~~;:::::

............

CM oteat sfS~ ~ ~ ~ ~ ~~~~~~~~~~~a ..........~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:ii~liiii~~~i.

f~ss N V~sion 2.1 Beta O
s s >> >> W > X% December 1992

......,,, ,...
:::> .:-: : i, :: ..:: . i ;.,....ls:.::..

ss S>. a '.f., ii 2'.:, iii :R

S~~~~ ~ aeyB, *et >a>Og

sa~~~~~~~~~~~~~~~...........
.: .,::.:S. :,X, ii~i ::-s:Nisy@>-u: : :: r

iU~~~~sss~~~~gs;Ngf~~~~~~~a i XS ~~~~~~....... .....B:::::: ~~~..'. Z :::::S ..........:S.:-f'.::.>.f.

t+S,,.,.S~~~~~~~~~~~~~~:~ii~iiiiii~:~,

tva~ ~ ~~~~~~~~:iiiiysli~: · iiiiii,

.,...-intehinin Mahies ororaio::::%,CmrgMsahst8,~ ~ ~ ~ hnkn ahns oprto':: ~ ~ ~ Cmrig, asahset



First printing, December 1992

PRELIMINARY DOCUMENTATION

The information in this document is subject to change without notice and should not be construed as a
commitment by Thinking Machines Corporation. Thinking Machines assumes no liability for errors in this
document.

This document does not describe any product that is currently available from Thinking Machines Corporation,
and Thinking Machines does not commit to implement the contents of this document in any product.

Connection Machine® is a registered trademark of Thinking Machines Corporation.
CM, CM-2, CM-200, CM-5, CM-5 Scale 3, and DataVault are trademarks of Thinking Machines Corporation.
CMosr, CMAX, and Prism are trademarks of Thinking Machines Corporation.
C*® is a registered trademark of Thinking Machines Corporation.
Paris, *Lisp, and CM Fortran are trademarks of Thinking Machines Corporation.
CMMD, CMSSL, and CMX11 are trademarks of Thinking Machines Corporation.
Scalable Computing (SC) is a trademark of Thinking Machines Corporation.
Thinking Machines® is a registered trademark of Thinking Machines Corporation.
SPARC and SPARCstation are trademarks of SPARC International, Inc.
Sun, Sun-4, and Sun Workstation are trademarks of Sun Microsystems, Inc.
UNIX is a registered trademark of UNIX System Laboratories, Inc.

Copyright © 1992 by Thinking Machines Coorpration. All rights reserved.

Thinking Machines Corporation
245 First Street
Cambridge, Massachusetts 02142-1264
(617) 234-1000

. . . .. .. .. . .. ... I... ... ... ... .. .. .. .. ..... .. .. .. .. 



Contents

1 About Version 2.1 Beta 0 ..............

Porting Code from V2.0 .....................

Notes on Beta 0 ...........................

2 Using the Scalable Disk Array .........

3 Using 64-Bit Integers .................

3.1 Data Type Specifications ...............

3.2 Enhanced Intrinsic Functions............

3.3 Utility Library Support ................

3.4 Restrictions on 64-Bit Integers ..........

Version 2.1 Beta 0, December 1992
Copyright ) 1992 Thinking Machines Corporation

1

1

1

2

3

3

5

6

6

111

..............

..............

.................

.................

.................

.................



Field Test Support
......... _._.., x.M.~.~~iM o.~, ...........

Field test software users are encouraged to communicate with Thinking
Machines Corporation as fully as possible throughout the test period. Please
report any errors you may find in this software and suggest ways to improve it.

When reporting an error, please provide as much information as possible to help
us identify the problem. A code example that failed to execute, a session
transcript, the record of a backtrace, or other such information is extremely
helpful in this regard.

If your site has an applications engineer or a local site coordinator, please contact
that person directly for field test support. Otherwise, please contact Thinking
Machines' home office customer support staff:

Internet
Electronic Mail:

uucp
Electronic Mail:

U.S. Mail:

Telephone:

customer-support@think.com

ames!think!customer-support

Thinking Machines Corporation
Customer Support
245 First Street
Cambridge, Massachusetts 02142-1264

(617) 234-4000

Version 2.1 Beta 0, December 1992

Copyright © 1992 Thinking Machines Corporation iv



CM Fortran Release Notes

1 About Version 2.1 Beta 0

This initial beta release of CM Fortran Version 2.1 provides the following new
functionality for CM-5 systems with vector units:

* Support for the CM file system on the Scalable Disk Array.

* Support for the 64-bit integer data type in the CM Fortran language and
Utility Library

Porting Code from V2.0

Version 2.0 programs should be recompiled and relinked to execute under
Version 2.1 Beta 0.

Notes on Beta 0

* This beta release does not support UNIX profiling. Use of the cmf
compiler option -pg causes a link-time error.

* The compiler issues a warning when asked to invoke a foreign compiler
or to link with Sun libraries, since this behavior will be discontinued in a
later beta release of V2.1. In the current release, however, it does still
perform the requested operation.

Version 2.1 Beta 0, December 1992
Copyright 0 1992 Thinking Machines Corporation

mm.



2...@ CM Fortran ReleaIe Note s v .2z.. ' ':

2 Using the Scalable Disk Array

The CM-5 system now supports two CM file systems, in addition to the UNIX
file system:

* The new SFS, or Scalable File System, which resides on the Scalable Disk
Array.

* The CMFS, or CM (DataVault) File System, which resides on storage
devices on the CMIO bus, including the DataVault, VMEIO host computer,

and CM-HIPPI.

See the CM-5 I/O documentation for more information on the CM file systems.

The I/O procedures in the CM Fortran Utility Library support both CM file
systems, transparently to the user.

For systems with more than one kind of storage device installed, the device
affected by a call to a CM Fortran I/O procedure is governed by a site default or

by the user environment variable CMFS_PATHTYPE. For information on the
defaulting behavior, see the CMOST man page for CMFS_PATHTYPE or the CM

I/O documentation.

Version 2.1 Beta 0, December 1992
Copyright © 1992 Thinking Machines Corporation

2 CM Fortran Release Notes



C Frr Rea os

3 Using 64-Bit Integers

This version provides a new data type, the 64-bit integer, both for scalar data on
the partition manager' and for parallel data on the vector units. This type will not
be supported on CM systems without vector units.

3.1 Type Specifications

CM Fortran now supports seven types for scalar and parallel data on CM-5
systems with vector units (along with character type for scalars only). The seven
types, along with their lengths in bits and their predefined symbolic names are
shown below.

Data Type

LOGICAL

INTEGER*4

INTEGER*8

REAL*4

REAL*8

COMPLEX*8

COMPLEX*16

Length

32

32

64

32

64

32

64

Symbolic Name

(none)
_SINGLEJINT_

_DOUBLE INT

_SINGLE

DOUBLE_

_SINGLECOMPLEX_
_DOUBLE_COMPLEX_

DOUBLE PRECISION (see REAL*8)

DOUBLE COMPLEX (see COMPLEX*16)

Integer and floating-point values default to the 32-bit length. The cmf compiler
provides an option, -double_.precision, that causes real values only to
default to the 64-bit length.

You can declare the desired length of a variable by using the CM Fortran
language extension type *length. For example:

INTEGER*8 A

COMPLEX*16 Z

Alternatively, you can use the Fortran 90 kind mechanism, described below.

Version 2.1 Beta 0, December 1992
Copyright 0 1992 Thinking Machines Corporation

CM ,Fortran Release Notes 3



4: CM.S,$:'9XS,'gS::§'tV Fortran.' ¢ Release.8f,{s%:R^.^ Notes§N.'",S~t,:, ir :: . .if;

KIND Keyword

Fortran 90 describes the keyword KIND, which associates a length with the type
in a specification statement. The value of KIND, called the kind type parameter,
must be a scalar integer initialization expression, meaning a compile-time
constant. In CM Fortran, it can be any constant expression that evaluates to 32
or 64. For example:

INTEGER(KIND=64) A

INTEGER(KIND=_DOUBLEINT_) B

REAL(KIND=_DOUBLE_) C

INTEGER LL

PARAMETER (LL=64)

INTEGER(KIND=LL) D

REAL(KIND=LL) E

Typed Constants

Fortran 90 introduces the notion of typed constants. To specify the type
(including kind) of a literal constant, append an underscore and then an integer
constant expression that evaluates to a valid KIND number. For example, a
constant of type REAL (KIND=_DOUBLE_) could be written either as 1. ODO or
as 1. 0 DOUBLE-.

Note the double underscore when the appended underscore of the typed constant
is combined with the prepended underscore of the CM Fortran symbolic name
for the kind type parameter:

INTEGER LL

PARAMETER (LL=64)

INTEGER(KIND=LL) D
D = 1234 64 + 1234 LL + 1234 DOUBLE INT

Version 2.1 Beta 0, December 1992

Copyright © 1992 Thinking Machines Corporation

CM Fortran Release Notes4



CM Forra Re

3.2 Enhanced Intrinsic Functions

Another component of the Fortran 90 kind mechanism is the intrinsic inquiry
function KIND, which takes a scalar or array argument and returns the kind type
parameter of the argument. The returned value is itself a scalar of the default
integer type (NTGER*4 in CM Fortran). For example,

INTEGER I

INTEGER*8 J

PRINT , KIND(I) ! prints 32
PRINT *, KIND(J) ! prints 64

The KIND function can be referenced in specification statements as well as in
executable statements.

In addition, the intrinsic functions INT and NINT, which convert a value of any
numeric type to an integer, have been enhanced to take an optional KIND
argument. The KIND argument is an initialization expression (constant) that
specifies the desired length of the result. Examples of INT referenced with the
KIND argument are:

INTEGER*8 BIGINT

INTEGER*4 SMALLINT

BIGINT = INT(SMALLINT,KIND=64)

BIGINT = INT(SMALLINT,KIND=KIND(BIGINT)) !KIND intrinsic

The three elemental intrinsics that inquire about the bit-level representation of
integer and logical values behave as follows:

* POPCNT and POPPAR, which report the population count and population
parity of the argument, always return an INTEGER*4 result, for any
argument of type INTEGER*4, INTEGER*8, or LOGICAL.

* LEADZ, which reports the number of leading 0 bits before a 1 bit is
encountered, returns an INTEGER*4 result for INTEGER*4 and LOGICAL
arguments, but returns INTEGER* 8 for arguments of type INTEGER* 8.

The new and enhanced intrinsic functions all have on-line man pages. View them
with the command man, specifying the function name in uppercase.

Version 2.1 Beta 0, December 1992
Copyright 0 1992 Thinking Machines Corporation

CM ortrn Release Notes 5



.. :.. 6. :.. . : CM:.:..:.::: Fota ees:e Ne:s:m::>:ay:>A _ =

3.3 Utility Library Support

The 64-bit integer type can be used for any CM array argument to procedures in
the CM Fortran Utility Library. It may not be used, however, for integer scalar
arguments. For front-end array arguments, such as the array argument to the
dynamic allocation utilities, an INTEGER*8 argument is accepted, but the extra
length is not used. When passing a type as an argument to a utility procedure, use
the predefined constant CMFLONG_S INTEGER.

For generating pseudorandom numbers, the Utility Library provides a new
procedure specifically for 64-bit integers:

CMF RANDOM LONG S INTEGER (DEST, LIMIT)

This utility takes only an INTEGER* 8 argument, and it runs the cellular
automaton that generates the values for 64 generations. The LIMIT argument is

also an INTEGER*8. The other random number utility, CMF_RANDOM, accepts
CM arrays of any numeric type, including INTEGER* 8, but it runs the automaton

for only 32 generations, and it accepts only a 32-bit LIMIT argument. Man pages
are provided on-line for both utilities.

3.4 Restrictions on 64-Bit Integers

* INTEGER*8 values cannot be used in READ, WRITE, and PRINT
statements as anything other than the I/O list items (the data to be
transferred). This type cannot be used for unit numbers, record numbers,
status variables, and so on.

* INTEGER* 8 values cannot be used as scalar integer arguments to the CM
Fortran Utility Library procedures. This type can be used for front-end
array arguments, but the second 32 bits of the argument are ignored.

* As with INTEGER*4, the CM system does not detect integer overflow for
INTEGER* 8 calculations. For example, multiplying 2**62 by 2**62 gives

incorrect results without warning. Further, the partition manager and the
vector units produce different incorrect results if overflow occurs while
converting an INTEGER*8 to an INTEGER*4.

* If an INTEGER*8 is used as the index variable in a DO loop, the total

number of iterations cannot exceed (2**32)-1.

Version 2.1 Beta 0, December 1992
Copyright © 1992 Thinking Machines Corporation

CM Fortran Release Notes6


